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Hobson and Chang recommend that the Kullback information measure 
replace the Shannon information measure as a basis for information theory. 
They cite several items in support of their proposal. The items are considered 
individually and it is shown that they do not in fact constitute sufficient 
reasons for accepting the Hobson/Chang proposal. It is concluded that the 
Shannon information measure should be retained as the basis of information 
theory. 
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1. I N T R O D U C T I O N  

H o b s o n  and  Chang  (1) have p r o p o s e d  that ,  "The  K u l l b a c k  [ information]  
measure  can, bu t  the Shannon  [ informat ion]  measure  cannot ,  fo rm the basis 
o f  a consistent,  general  (i.e., ex tending to  cont inuous  sample  spaces and  
noncons t an t  p r io r  dis t r ibut ions)  theory  o f  i n fo rma t ion" .  In  suppor t  o f  this 
p roposa l  they cite the fol lowing:  

1 Xerox Corporation, Rochester, New York. 
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1. The Shannon information measure Is is a special case of the Kullback 
information measure Ix. 

2. The expressions for I~ in the discrete and continuous cases arise from 
the same Lebesgue-Stiltjes integral. Is does not have this property. 

3. Is is not invariant under certain transformations, while IK is. 

4. Jaynes' principle of minimum prejudice "makes sense" when applied 
to the Kullback measure, but does not (in general) when applied to 
the Shannon measure. 

5. Is is additive over all two-step processes, while IK is additive only 
when the data are additive. 

It is the purpose of this note to document our disagreement with the Hobson- 
Chang proposal and to take issue with each of the supporting items cited 
above. 

2. N O T A T I O N  

The mathematical concept of uncertainty is considered to have specific 
meaning only in respect to a well-defined question. A question is thus con- 
sidered to be "well defined" only if it is possible to define an exhaustive set 
of possible answers. In Boolean symbols, if Q represents the question, 
§ represents "or",  and Ai represents the ith member of the set of possible 
answers, then a "well-defined" question implies the ability to define all the 
symbols on the right-hand side of the equation 

Q = A I + A ~ + ' " + A ,  (1) 

When a statistician says, "Define the sample space" (i.e., enumerate the Ai) 
the terminology used here translates to, "Pose a well-defined question." 
Uncertainty about a question refers to the inability to say which Ai is true. 
There is, of course, a higher level of uncertainty which might be associated 
with deciding what the question is, but this kind of uncertainty does not at 
this time lend itself to straightforward analysis. 

Knowledge pertaining to Q is said to be deterministic if possession of 
that knowledge permits a person to state that one of the Ai is true and the 
rest false. Knowledge which pertains to the set of answers but does not tell 
which one is true is said to be "uncertain." 

There exists a unique code for transmitting uncertain knowledge which 
guarantees against the deliberate introduction of inconsistency, ambiguity, 
ad hoe procedures, and lack of candor. (2) According to the mathematical 
derivation which leads to this result, probability is an encoding of knowledge. 
It is appropriate to speak of a "state of knowledge" and denote the state by 



On the Kullback Information Measure as a Basis for Information Theory 333 

X. The encoding is symbolized byp(A~ f X), wherep is the probability measure 
assigned to A~ to represent knowledge 7(. If  we write as a short-hand notation 
pJ~ ---- p(Ai I Xk), then the set P~ ~- (pl k, p2k,.., piT~,...) encodes the knowledge 
X k pertaining to Q = (A1 + A2 + "'" 6- Ai 6- ""). 

3. T H E  S H A N N O N  A N D  KULLBACK MEASURES FOR 
DISCRETE VARIABLES 

The concept "state of knowledge," represented by X in the foregoing, is 
distinct from the concept "information in a message." The distinction is 
critical to any comparison between the Kullback and Shannon measures. 
Since the connection between the Shannon definition of entropy as a measure 
of  uncertainty and the Clausius definition of entropy (in terms of heat and 
absolute temperature) has already been shown, (a-~) arguments based on 
thermodynamic reasoning may be employed here without additional justifica- 
tion. The distinction between a state function and a path function is useful. 
(Energy is a state function; work is a path function.) Shannon's entropy is a 
state function which measures the uncertainty of X about Q. It depends 
on the encoding P, i.e., for discrete A~ 

Us -~ Us(Q l X)  = Us(P) -~ - - k  ~ p~ In pi (2) 
i 

When a given problem is analyzed it is important to decide whether Q has 
changed (a new problem or a new system) or X has changed (a new state of  
knowledge). 

The Kullback measure of information is a path function which depends 
upon Q and two states of knowledge X and X ~ If  the states of knowledge X 
and X ~ are encoded by P and p0, the Kullback measure is 

IK(Q [ X,  X ~ = ~ Pi ln(pi/Pi ~ (3) 
i 

This function is always positive if the p's satisfy ~ p ,  = 1, 0 ~ p  ~< 1 
(Ref. 2, p. 100). 

The Shannon measure of  information is taken as the difference in 
uncertainties, i.e., 

Is(Q J X, x ~ -~ Us(Q i x  ~ - Us(Q I x )  (4) 

Is is not always positive (Ref. 2, p. 116). From the definitions given in (3) 
and (4) it is seen that Shannon's measure of information is "reversible" but 
Kullback's is not, i.e., 

IK(Q I X, X o) + IK(Q I X~ X)  @ 0 (5) 

Is(Q J X, X ~ 6- Is(Q I x~ X) = 0 (6) 
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The fact that I s  is not antisymmetric in X and X ~ gives rise to irreversibility in 
the "mechanical" sense O.e.,  cannot go backward) but it remains to be seen 
if change in the "forward" direction is non-isentropic (i.e., loses information). 

In a test of the two measures, therefore, it is important to avoid inadver- 
tently going "backward."  The idea of "forward" and "backward" is related 
to the idea of learning a sequence of "truths." ("Truth"  is an elusive concept; 
the context in which it is used here will become dearer.) If we begin with a 
state of knowledge X ~ and acquire a new datum D 1, the new state of  
knowledge is represented by 

X 1 = X ~  1 (7) 

(writing two Boolean symbols together as though multiplied implies the 
word "and"  between them). If  we learn another datum D ~, the new state of 
knowledge is 

X 2 = X ~  2 (8) 

The order in which the symbols is written is taken as having no temporal 
significance, i.e., 

X ~ = X ~  ~- X ~  1 = D 1 X ~  2, etc. 

If  we wish to introduce time, we must do so explicitly (Ref. 2, p. 8). If  we say 
X 2 is " true,"  we mean that none  of X ~ D ~, or D 2 is false. In particular, this 
means X ~ D 1, and D 2 do not contradict one another. The introduction of a 
new datum D ~ which contradicts a previous state of  knowledge is called 
"going backward" and is a form of inconsistency, for if probabilities encode 
knowledge, the encoding can be consistent only if the knowledge is consistent. 

If  D 2 = "D ~ is false," then we are led to interpret X ~  2 as implying a 
return to X ~ The word " t rue" is here used in the very limited sense; "postu- 
lated as true" and "not  in conflict with other postulates." 

Shannon's measure has a simple interpretation (Ref. 2, p. 111). It  
indicates an expectation for how much there is to learn in going from state X 
to a deterministic state (for which U s = 0). Since Us  is a state function, the 
change in entropy between any two states of  knowledge about a given 
question is independent of the path. 

Kullback's measure also has a simple interpretation (Ref. 2, p. 109). It 
indicates an "expectation" for what will be learned if one believes X and 
considers going to some other state X ~ (which one does not really believe). 

4. T H E  K U L L B A C K  A N D  S H A N N O N  M E A S U R E S  I N  
J A Y N E S '  F O R M A L I S M  

In the paper by Hobson and Chang it is suggested that the Kullback 
measure (plus an irrelevant constant) be used to replace Shannon's measure 
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in Jaynes' "principle of minimum prejudice. ''(7~ This principle is used to 
encode various kinds of knowledge: 

J A Y N E S '  P R I N C I P L E  OF M I N I M U M  P R E J U D I C E .  Assign the set 
o f  probabilities which maximizes  the entropy Us ,  

Us = - - k  ~ Pi In Pi 
i 

subject to what is known. 

The proposal by Hobson and Chang is to substitute --Ix for Us (in Ref. 1 a 
new function Uk = I 2  ~ -- Ik is proposed, but since Ik ~ does not depend on 
the set P, the constant is irrelevant mathematically). 

In testing --Ix as a criterion for choosing P, it is important not to use 
initial states of knowledge for which the nonzero probabilities are uniform. 
For, if p 0  = 1/n for i = 1, 2,..., n, the Kullback information measure and 
the Shannon information measure differ only by k In n. 

5. USE OF T H E  K U L L B A C K  MEASURE IN JAYNES'  F O R M A L I S M  

Consider that knowledge of state X 1 has been encoded in probability 
distribution p1 [ = ( p  1, p21,..., p 1,...)]. Let D 2 represent added information of  
the form 

D 2 = "Y, p~g~ = ( g ) "  
i 

Let X ~ -~ XZD 2. Using the Kullback measure, the problem of assigning p2 
becomes: 

maximize 

subject to: 

The solution is 

--IK - - - k  ~ p i  21np~ 2 + k ~ p 2 1 n p i  x 
i i 

pi 2 -~ 1, ~ p~2g i = ( g }  
i i 

pi  2 = p~lCe-~* 

where C -1 = ~ i  Pi le-ag~ and h satisfies 

le-ag~ l e - l g i  

The new probability distribution is a product of the prior distribution with a 
new distribution. 
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6. A S P E C I F I C  E X A M P L E  

Suppose  Q = A1 -+- A~ + .-- + A6,  

Ai  ~ " the  value is i "  

X ~ = " the  labels on the Ai  tell us no th ing  a b o u t  the t ru th  of  A~" 

D 1 = " the  mean  value of  i = 4" 

D 2 ----- " the  mean  value o f  i 2 ---- 17" 

F r o m  the Jaynes '  principle,  using Shannon ' s  i n fo rma t ion  measure,  we 
find the fol lowing results (see Table  I). W h e n  the K u l l b a c k  in fo rmat ion  
measure  is used the same results occur  for  states of  knowledge  X ~ X 1, and  X 2 
because X ~ gives a "un i fo rm pr io r" .  In  these cases the Ku l lback  and Shannon  
in fo rma t ion  measures  differ only  by  a constant ,  so they yield the same pro-  
babil i t ies.  On  the o ther  hand,  i f  we define X 3' to be the same as X 3 bu t  compute  
p3 first by  the pa th  X ~ --+ X 1 --~ X 8 and  second by  the pa th  X ~ --+ X 2 --+ X 3 

us ing the K u l l b a c k  measure ,  we arr ive at  two different answers.  I t  is found  
tha t  the  resul t ing p robab i l i ty  d i s t r ibu t ion  satisfies the last  cons t ra in t  imposed  
bu t  does no t  preserve previous  constaints .  Thus  there is a loss o f  in format ion .  

Thus  we find tha t  the four th  and  fifth o f  H o b s o n  and  Chang ' s  suppor t ing  
i tems lead  to  unsa t i s fac tory  results. The o ther  ob jec t ions  are also o f  interest.  

I t e m  1: The Shannon in format ion  measure I s is a special  case o f  the 

Ku l lback  information measure I x .  As shown by H o b s o n  and Chang,  the 
change in  in fo rma t ion  associa ted with  acquir ing  a new d a t u m  is numer ica l ly  
the  same whether  one measures  in fo rma t ion  by  I x  or  by  I s ,  prov ided  the 
p r io r  d i s t r ibu t ion  is uniform.  But  this misses the po in t  tha t  the Shannon  
in fo rma t ion  is a state var iable  and  the K u l l b a c k  in fo rmat ion  is a pa th  
var iable ,  to  b o r r o w  terms f rom thermodynamics .  Tha t  is, for  a specified 

Table I 

State of knowledge Probability distribution ( i )  (i ~) 

X o 

X 1 = XOD ~ 

X 2 = XOD 2 

X ~ =XODZD ~ 

Pi = 1/6 3.50 15.17 

Pi = 0.0866e ~ 4.00 18.76 

p~ = 0.1376exp(0.0119i 2) 3.75 17.00 

Shannon: 
p~ ~ 0.0001812 exp(3.82i -- 0.476i ~) 4.00 17.00 

Kullback: 
via X~ 8, pi=0.1062 exp(0.1746i--0.011427) 3 .77 17.00 
via X~ 8,pi=0.0983 exp(0.0869i+0.01191i 2) 4.00 18.83 
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change in state of knowledge the Shannon information is uniquely defined 
while the Kullback information depends on how the change takes place. I f  
the extent of one's knowledge about the answer to a question depends only 
on the available data without regard to the temporal order in which the data 
were gathered, to express information in a way which depends on that order 
is inconsistent. 

Item 2: Is does not have a representation as a Lebesgue-Stiltjes integral 
which reduces to the usual expressions in both the discrete and continuous 
cases. Hobson and Chang are concerned because Is (like the probability mass 
functions) behaves badly when passing smoothly between discrete and 
continuous spaces. As it happens, I s can be represented in measure-theoretic 
terms in a form which does reduce to the usual expressions in the discrete and 
continuous cases. (See W i l k s #  Section 12.1 for the construction of  such an 
expression for a function essentially identical to the Shannon information.) 
The fact that the representation is not a Lebesgue-Stiltjes integral seems 
unimportant. 

Item 3: IK is and I s is not invariant under a change of continuous 
variables. Is can be made measure invariant by carefully going from the 
discrete to the continuous variable. The result is to introduce a singularity 
which is usually suppressed but should be retained when a change of  variable 
is desired. There seems to be little use for the property. 

Hobson and Chang attach significance to this phenomenon since there is 
an intuitive appeal to the idea that the information should be unchanged by 
a mere mathematical transformation. This misses the point  that in performing 
the transformation one at the same time transforms the question. 

To see this, consider the following experiment. Let there be two boxes--  
one red, one blue. Let it be known that the red box contains a collection of 
spheres all of  whose diameters are less than 1 in. Given the box is very large, 
the appropriate prior probability on the diameter of  a sphere drawn at 
random from the red box is uniformly distributed on zero to one. 

Now suppose it is known of the blue box that it contains a collection of 
spheres, all of  whose surface areas are less than pi inches. The prior probabili- 
ty assignable to the surface area of a sphere from the blue box is uniformly 
distributed on zero to pi. 

The given information is the same in each case, yet by the way the 
question is asked the priors are incompatible. As a matter of fact, there is no 
"right" answer to the paradox. 

The paradox arises in practical situations. See Ref. 2, p. 149 for an 
example from chemistry and Ref. 2, Chapter 10, where the problem arises 
in the relation between hazard rate and MTBF in reliability theory. The fact 
that Ix is constant under changes of variables is relevant only to the extent 
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that  the question in some sense remains invariant. In general, questions do 
not remain invariant under transformations, so why should the information ? 

The answer lies in a simple interpretation of Is  as the expected amount  
by which you will be "surprised" by the outcome of a discrete experiment. 
The extent of  your surprise is measured by the negative log of the probability 
you had assigned to what actually happened. The Shannon information 
measure thus has an appealing intuitive basis. Since the information at hand 
about  a question may indeed be a function of the manner in which the 
question is asked, the inconsistent priors merely reflect the inconsistency of 
our own thought processes. 
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